
    
      Navigation

      
        	
          index

        	
          next |

        	python-for-researchers 0.1 documentation 
 
      

    


    
      
          
            
  
Python for Researchers

Outlines and instructional materials for the Python I: Intro and Python II:
Data Analysis and Visualization seminars taught as part of Michigan State
University’s semiannual Faculty Research Seminars.

Thank you to everyone who attended these seminars. A number of good questions
were asked and your feedback at the ends of the sessions was helpful.


License

This work is licensed under the Creative Commons Attribution 3.0 Unported
License [http://creativecommons.org/licenses/by/3.0/].




Table of Contents



	Python I: Intro




	Python II: Data Analysis and Visualization




	Downloads for Presentation

	Python Distributions




	Additional Python Packages




	Python Packages








[image: Creative Commons Attribution 3.0 Unported License]
 [http://creativecommons.org/licenses/by/3.0/]





          

      

      

    


    
         Copyright 2012 - 2013, Eric A. McDonald.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        	latest

      
    

  










  
    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	python-for-researchers 0.1 documentation 
 
      

    


    
      
          
            
  
Python I: Intro


Expectations


	Previous programming experience recommended. Focus is on using Python as a
tool, not on teaching programming.

	Will learn language while learning [hopefully] useful tools.

	Python is not the solution to all your problems. (I.e., this seminar is
informational rather than evangelical in nature. Draw your own conclusions.)

	Python is not a magical gift box; it is a programming language. At least
some work will be required to reach your goals.






Python Interest Group at MSU?


	People would meet to help each other install Python and various Python
packages.

	People would talk about how they use Python at work.

	People would share their experiences with various pieces of Python software.

	Any interest?






Why Python?


	Popularity. You will likely encounter it. Maybe you already did and maybe
that is why you are here?



	Compared to many other scripting languages, it has a fairly simple syntax
which encourages the writing of readable code and may be easier to learn.



	Compared to other scripting languages, it has one of the most
full-featured sets of tools for scientific computing: NumPy, SciPy,
pandas, and matplotlib.



	Comparisons and Contrasts



	Matlab/Octave



	vs NumPy, SciPy, matplotlib, and scikits








	R



	Can embed in IPython

	vs pandas, StatsModels, and matplotlib








	Julia



	Can embed in IPython








	Perl, Ruby, Scala, Clojure, Haskell, OCaml, etc...



	Javascript










	Consistency



	Warts in Ruby and Javascript: https://www.destroyallsoftware.com/talks/wat













Interpreters


	Python



	Python 2 and Python 3

	CPython, IronPython, Jython, and Stackless Python








	IPython



	IPython Terminal

	IPython QtConsole

	IPython Notebook








	Interpreters on the Web



	repl.it: http://repl.it/languages/Python

	PythonAnywhere: https://www.pythonanywhere.com/








	Running Programs



	Pitfall Warning: Explicit print vs implicit print.








	Compiling Programs



	No explicit compilation. Performed on-the-fly from source into Python VM
bytecode. (Note presence of .pyc and .pyo files.)

	PyPy and Nuitka

	Pyrex and Cython

	Numba













Everything is an Object


	Almost everything is an object.



	Don’t worry too much about what an object is. Consider it to be a some
kind of value which has some associated attributes.

	Attributes, themselves, are generally objects.

	Objects are created from types. Types themselves are objects.

	Don’t worry about object-oriented programming, if you’re not familiar with
it. Existing types are flexible enough that you usually won’t have to
create your own. (But, it is easy to do so if you have the need!)








	Information about an object and its attributes can be found.



	help() [http://docs.python.org/library/functions.html#help]













Built-in Types


	object

	type

	module

	NoneType

	bool

	function (named and anonymous)

	int, long

	float

	complex

	str, unicode, bytearray

	tuple

	list

	set [http://docs.python.org/library/stdtypes.html#set]

	dict [http://docs.python.org/library/stdtypes.html#dict]






Variables


	Important: Types are associated with values rather than variable names.



	Variable names are references to values.



	References to values are created by assignment with = statement.

	References are likewise changed with = statement.

	References are deleted with del statement.

	Examples.








	Pitfall Warning: Multiple named references to same sequence or mapping.



	Example.

	How to make a copy of a sequence? Several ways - more on that later.








	Multiple assignment can be performed using commas as separators.



	Multiple values can be swapped without explicit intermediate variables.



	Exercise: Try it!













Operators


	+, -, *, /, //, %, **



	Exercises:



	What happens if you add strings?

	What happens if you multiply a string, tuple, or list by an integer?








	Notes on integer division vs true division.



	Examples of string interpolation.



	Examples of the assigning variants of these operators.










	==, !=, <, <=, >=, >



	is, is not, in, not in



	Notes on precedence and alternative keyword orders.








	not, and, or



	Notes on “zeroish” vs “non-zeroish” values.

	Notes on short-circuiting evaluation.








	~, &, |, ^, <<, >>



	Examples of the assigning variants of these operators.













Working with Objects


	Objects are instances of types.



	Instances can be created by calling types or factory functions.

	Examples.








	dir() [http://docs.python.org/library/functions.html#dir]



	hasattr() [http://docs.python.org/library/functions.html#hasattr], getattr() [http://docs.python.org/library/functions.html#getattr], setattr() [http://docs.python.org/library/functions.html#setattr]



	Dot notation (.) is used to access attributes.



	Exercise: Try to add an attribute to an instance of object.








	The class statement defines a new type.



	Inheritance. Old-style and new-style classes.

	Example of simple class.

	Exercise: Define a new class. Create an instance of it. Then, try to add a
custom attribute to it. If successful, then try accessing that attribute.








	Note on special methods with double underscores.








Working with Strings


	Various kinds of string literals.



	len() [http://docs.python.org/library/functions.html#len]



	Indexing



	Note on zero-based indexing.

	Exercise: What happens if you use a negative index?








	Slicing



	Colon notation (:) for range and stride.

	Examples.








	str.strip() [http://docs.python.org/library/stdtypes.html#str.strip]



	str.lower() [http://docs.python.org/library/stdtypes.html#str.lower] and str.upper() [http://docs.python.org/library/stdtypes.html#str.upper]



	str.split() [http://docs.python.org/library/stdtypes.html#str.split] and str.join() [http://docs.python.org/library/stdtypes.html#str.join]



	str.replace() [http://docs.python.org/library/stdtypes.html#str.replace]



	str.format() [http://docs.python.org/library/stdtypes.html#str.format]



	Examples.








	str.__sizeof__()



	Notes on character width.













Working with Tuples


	Creation of tuples.

	Length, indexing, and slicing like strings.

	Pitfall Warning: Syntactic sugar for 1-element tuple.

	Note on multiple assignment and tuples.






Working with Lists


	Creation of lists.



	List comprehensions.

	range() [http://docs.python.org/library/functions.html#range] and xrange() [http://docs.python.org/library/functions.html#xrange]








	Length, indexing, and slicing like strings.



	list.append() and list.insert()



	Exercise: Insert an item at the front of a list.








	list.extend()



	Item removal.



	Use del with an index or slice.

	list.pop()

	list.remove()








	list.count()



	list.reverse() and reversed() [http://docs.python.org/library/functions.html#reversed]



	list.sort() and sorted() [http://docs.python.org/library/functions.html#sorted]








Working with Sets


	Creation of sets.



	Pitfall Warning: The empty set is not { }!








	Length, but no indexing or slicing.



	set.add() [http://docs.python.org/library/stdtypes.html#set.add]



	set.pop() [http://docs.python.org/library/stdtypes.html#set.pop], set.remove() [http://docs.python.org/library/stdtypes.html#set.remove], set.discard() [http://docs.python.org/library/stdtypes.html#set.discard]



	set.intersection() [http://docs.python.org/library/stdtypes.html#set.intersection], set.union() [http://docs.python.org/library/stdtypes.html#set.union]



	Updating variants of these methods.

	Examples.








	set.difference() [http://docs.python.org/library/stdtypes.html#set.difference], set.symmetric_difference() [http://docs.python.org/library/stdtypes.html#set.symmetric_difference]



	Updating variants of these methods.

	Examples.








	Exercise: What do the -, &, |, and ^ operators do with sets?



	Exercise: What about the assigning variants of the same?



	frozenset [http://docs.python.org/library/stdtypes.html#frozenset]








Working with Dictionaries


	Creation of dictionaries.



	From a list of key-value pairs.


enumerate() [http://docs.python.org/library/functions.html#enumerate]

zip() [http://docs.python.org/library/functions.html#zip]






	dict.fromkeys() [http://docs.python.org/library/stdtypes.html#dict.fromkeys]



	Dictionary comprehensions.



	Examples.



	Exercise: Create a dictionary, using a list of letters as keys and a list
of numbers as values.










	Indexing by key, but no slicing.



	Value retrieval by indexing vs dict.get() [http://docs.python.org/library/stdtypes.html#dict.get].



	Manipulating sequences as dictionary values: dict.setdefault() [http://docs.python.org/library/stdtypes.html#dict.setdefault]



	Testing for a key with the in operator.



	Lists of keys, values, and key-value pairs.



	Views vs iterators.








	frozendict








Flow Control and Modularity


	pass



	def - yield - return



	Docstrings.

	Functions can return multiple values.

	Arbitrary numbers of arguments.

	Keyword arguments.

	Examples.








	if - elif - else



	Examples.








	for .. in - continue - break - else



	Really? An else clause with a loop? Yes.

	Examples.








	while - continue - break - else



	Examples.








	try - except - else - finally



	The exception hierarchy.

	Examples.








	with



	Examples later.













Functional Programming


	lambda

	Biconditional expressions.

	all() [http://docs.python.org/library/functions.html#all] and any() [http://docs.python.org/library/functions.html#any]

	map() [http://docs.python.org/library/functions.html#map]

	filter() [http://docs.python.org/library/functions.html#filter]

	reduce() [http://docs.python.org/library/functions.html#reduce]

	sum() [http://docs.python.org/library/functions.html#sum], min() [http://docs.python.org/library/functions.html#min], max() [http://docs.python.org/library/functions.html#max]






Working with Files


	open() [http://docs.python.org/library/functions.html#open] and with context handler



	Modes








	Iteration over lines of text file.



	file.read() [http://docs.python.org/library/stdtypes.html#file.read], file.readline() [http://docs.python.org/library/stdtypes.html#file.readline]



	file.write() [http://docs.python.org/library/stdtypes.html#file.write], file.writeline()








Miscellany


	int() [http://docs.python.org/library/functions.html#int]



	Number bases.








	float() [http://docs.python.org/library/functions.html#float], complex() [http://docs.python.org/library/functions.html#complex]



	Infinities and not-a-number (NaN).








	str() [http://docs.python.org/library/functions.html#str], unicode() [http://docs.python.org/library/functions.html#unicode], repr()



	raw_input() [http://docs.python.org/library/functions.html#raw_input]



	chr() [http://docs.python.org/library/functions.html#chr], unichr() [http://docs.python.org/library/functions.html#unichr], ord() [http://docs.python.org/library/functions.html#ord]



	eval() [http://docs.python.org/library/functions.html#eval]



	exec(), execfile() [http://docs.python.org/library/functions.html#execfile]



	__builtins__, __builtin__ [http://docs.python.org/library/__builtin__.html#__builtin__], builtins



	Decorators



	Properties



	Generator Expressions








Standard Library


Namespaces, Scopes, and Modules


	vars() [http://docs.python.org/library/functions.html#vars]

	locals() [http://docs.python.org/library/functions.html#locals] and globals() [http://docs.python.org/library/functions.html#globals]

	import

	from .. import ..

	Aliasing with as.

	Multiple selective imports.






Back to the Future


	__future__ [http://docs.python.org/library/__future__.html#__future__]



	division

	print_function

	absolute_import













Python Sundries


	sys [http://docs.python.org/library/sys.html#sys]



	stdin, stdout, stderr

	version, version_info

	modules








	collections [http://docs.python.org/library/collections.html#collections]



	collections.namedtuple() [http://docs.python.org/library/collections.html#collections.namedtuple] (type definitions for the lazy)

	collections.defaultdict()

	collections.OrderedDict()













Human-Readable Data


	pprint [http://docs.python.org/library/pprint.html#pprint]






Math and Statistics


	math [http://docs.python.org/library/math.html#math], cmath [http://docs.python.org/library/cmath.html#cmath]



	pi and e

	Exercise: Quadruple the arc tangent of 1.

	Exercise: Investigate the difference between the built-in functions
int() [http://docs.python.org/library/functions.html#int] and round() [http://docs.python.org/library/functions.html#round] and the math [http://docs.python.org/library/math.html#math] functions
math.floor() [http://docs.python.org/library/math.html#math.floor], math.ceil() [http://docs.python.org/library/math.html#math.ceil], and math.trunc() [http://docs.python.org/library/math.html#math.trunc].








	decimal [http://docs.python.org/library/decimal.html#decimal]



	Examples.








	fractions [http://docs.python.org/library/fractions.html#fractions]



	Examples (including classic 1.1 from float and from Decimal)








	random [http://docs.python.org/library/random.html#random]



	random.choice() [http://docs.python.org/library/random.html#random.choice], random.sample() [http://docs.python.org/library/random.html#random.sample]

	random.shuffle() [http://docs.python.org/library/random.html#random.shuffle]

	Samples from assorted distributions.

	Examples.

	Exercise: Generate a list of 10 random samples from a Gaussian
distribution.













Gathering Data


	csv [http://docs.python.org/library/csv.html#csv]



	Can handle other separators besides commas.

	Can ignore header lines.

	Examples.








	urllib [http://docs.python.org/library/urllib.html#urllib], urllib2 [http://docs.python.org/library/urllib2.html#urllib2]



	FTP and HTTP retrieval of data.

	Can scrape web pages for data. Use in conjunction with something like
BeautifulSoup. For example, see this Stack Overflow question [http://stackoverflow.com/questions/2081586/web-scraping-with-python].

	Examples.













Data Persistence


	pickle [http://docs.python.org/library/pickle.html#pickle]



	pickle.dump()

	pickle.load()

	Exercise: Create a dictionary and set. Dump them to a file. Load them from
the file.













Raking Data


	operator [http://docs.python.org/library/operator.html#operator]



	operator.itemgetter() [http://docs.python.org/library/operator.html#operator.itemgetter]

	operator.attrgetter() [http://docs.python.org/library/operator.html#operator.attrgetter]

	Functional forms of built-in operators.

	Examples.








	re [http://docs.python.org/library/re.html#re]



	re.compile() [http://docs.python.org/library/re.html#re.compile]

	re.findall() [http://docs.python.org/library/re.html#re.findall]

	Examples.













Files, Directories, and Subprocesses


	os [http://docs.python.org/library/os.html#os], subprocess [http://docs.python.org/library/subprocess.html#subprocess]



	os.getcwd() [http://docs.python.org/library/os.html#os.getcwd]

	os.getpid() [http://docs.python.org/library/os.html#os.getpid]

	subprocess.Popen [http://docs.python.org/library/subprocess.html#subprocess.Popen]








	os.path [http://docs.python.org/library/os.path.html#os.path], glob [http://docs.python.org/library/glob.html#glob], shutil [http://docs.python.org/library/shutil.html#shutil]













          

      

      

    


    
         Copyright 2012 - 2013, Eric A. McDonald.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        	latest

      
    

  










  
    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	python-for-researchers 0.1 documentation 
 
      

    


    
      
          
            
  
Python II: Data Analysis and Visualization


Expectations


	Previous Python experience required. Focus is on using Python as a tool,
not on learning the language.



	Python is not the solution to all your problems. (I.e., this seminar is
informational rather than evangelical in nature. Draw your own conclusions.)



	Python is not a magical gift box; it is a programming language. At least
some work will be required to reach your goals.



	Consider me to be a tour guide rather than an expert.



	Will highlight capabilities of various packages, but have very little
experience with most of them.













Useful Resources


	Stack Overflow: http://stackoverflow.com  (Someone has probably already asked
your question and received an answer or a dozen answers. If not, you can ask
questions here too.)

	Python 2 Reference: http://docs.python.org/2

	Python 3 Reference: http://docs.python.org/3

	IPython Notebook Gallery: http://nbviewer.ipython.org/

	IPython Reference: a collection of IPython tutorials [https://github.com/ipython/ipython/tree/master/examples/notebooks#a-collection-of-notebooks-for-using-ipython-effectively]






IPython


	Copy and paste of example output.



	Pop-up help.



	Tab completions.



	Automatic pretty-printing.



	Persistent history.



	Logging sessions.



	Demo mode.



	Loading Python files.



	Pylab



	vs SAGE













NumPy


	NumPy arrays vs Python lists.



	Creation of arrays.



	array

	arange

	linspace

	zeros, ones








	Reshaping arrays.



	eye



	Element-wise operations.



	Simple linear algebra.



	Simple stats.






Note

If you were in the morning session, then you want to np.resize to resize
a NumPy array and not np.reshape as I accidentally wrote. Sorry for the
problem.






SciPy




matplotlib




pandas




StatsModels




NetworkX




NLTK




scikits


	scikit-learn

	scikit-image






SymPy


	Running isympy.



	Using SymPy from within an IPython GUI.



	Example.













StarCluster




Miscellany


	mpi4py

	IPython parallelism

	Cython

	Numba

	PyCUDA









          

      

      

    


    
         Copyright 2012 - 2013, Eric A. McDonald.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        	latest

      
    

  










  
    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	python-for-researchers 0.1 documentation 
 
      

    


    
      
          
            
  
Downloads for Presentation

Intro Demo

Standard Library Demo

NumPy Demo

Pandas Demo

matplotlib Demo
matplotlib Example Script

To use in IPython:

from IPython.lib.demo import Demo
demo = Demo( "intro-demo.py" )  # for example
demo( )





Presenter: Eric A. McDonald  < em [at] msu [dot] edu >





          

      

      

    


    
         Copyright 2012 - 2013, Eric A. McDonald.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        	latest

      
    

  










  
    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	python-for-researchers 0.1 documentation 
 
      

    


    
      
          
            
  
Python Distributions

A Python distribution is a software bundle, which contains a Python interpreter
and the Python standard library. Installer programs for common operating
systems are a frequent mode of distribution. Many Python distributions also
have package managers so that you can install or upgrade various Python
packages.

Some of the most popular distributions are listed below. Distributions which
are marked as “scientific” are ones which come with IPython, numpy, pandas, and matplotlib, at a
minimum. All of the distributions provide at least one integrated development
environment (IDE) for free. A Python IDE provides a Python-aware code editor
integrated with the ability to run code from that editor.


ActiveState ActivePython


Scientific: No, but many scientific packages can be added via the package
manager

Platform: AIX, HP-UX, Linux, MacOS X, Solaris, Windows

Overview: http://www.activestate.com/activepython

Downloads: http://www.activestate.com/compare-editions

Package List: too many to list - use search page:
http://code.activestate.com/pypm/search:/?tab=name

Package Manager: PyPM [http://code.activestate.com/pypm/]

IDE: IDLE, Komodo (must be purchased
separately from ActiveState)

Note: ActivePython is one of the oldest Python distributions, but is not
particularly geared towards science.







Continuum Analytics Anaconda


Scientific: Yes

Platform: Linux, MacOS X, Windows

Overview: https://store.continuum.io/

Downloads: [Note: Complete distribution is available for free, but requires
registration first. Also, academics can get several powerful commercial
add-on products for free with proof of affiliation with an educational
institution.]

Package List: http://docs.continuum.io/anaconda/pkgs.html

Package Manager: conda [http://docs.continuum.io/conda/]

IDE: Spyder

Note: Continuum provides a Python compiler, called Numba [http://numba.pydata.org/], as part of its distribution. This can compile
Python code down to machine code and is aware of how to optimize with
special consideration for the popular numpy.

Note: Commercial add-on tools are linked against the Intel Math Kernel
Library (MKL) for improved numerical performance.







Enthought Canopy


Scientific: Yes

Platform: Linux, MacOS X, Windows

Overview: https://www.enthought.com/products/canopy/

Downloads: [Note: Academics can get the professional version for free by
registering for an academic license at
https://www.enthought.com/products/canopy/academic/ .]

Package List: https://www.enthought.com/products/canopy/package-index/

Package Manager: Canopy Package Manager [http://docs.enthought.com/canopy/quick-start/package_manager.html]

IDE: IDLE, SciTE

Note: Professional version is linked against the Intel Math Kernel Library
(MKL) for improved numerical performance.







Python(x,y)


Scientific: Yes

Platform: Windows

Overview: https://code.google.com/p/pythonxy/

Downloads: https://code.google.com/p/pythonxy/wiki/Downloads

Package List: https://code.google.com/p/pythonxy/wiki/StandardPlugins

IDE: SciTE, Spyder

Other Tools: Console (enhanced Windows command line window), WinMerge
(differencing and merging of files on Windows)

Note: A variant of this distribution is also available for Linux; please see
pythonxy-linux [https://code.google.com/p/pythonxy-linux/].







WinPython


Scientific: Yes

Platform: Windows

Overview: https://code.google.com/p/winpython/

Downloads: https://code.google.com/p/winpython/downloads/list

Package List: https://code.google.com/p/winpython/wiki/PackageIndex

Package Manager: WinPython Package Manager (WPPM) [https://code.google.com/p/winpython/wiki/ControlPanel]

IDE: SciTE, Spyder

Other Tools: TortoiseHG (Mercurial version control system integrated into
Windows Explorer)









Additional Python Packages

Some Python packages may not be a part of some distributions, but contain
files which must be compiled (i.e., they are not “pure Python”). As it can
be difficult to compile these files, especially on Windows, there exist
third-party repositories of precompiled packages.


Christoph Gohlke’s Windows Binaries


Overview: http://www.lfd.uci.edu/~gohlke/pythonlibs/

Downloads: http://www.lfd.uci.edu/~gohlke/pythonlibs/

Package List: http://www.lfd.uci.edu/~gohlke/pythonlibs/

Platform: Windows










          

      

      

    


    
         Copyright 2012 - 2013, Eric A. McDonald.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        	latest

      
    

  










  
    
      Navigation

      
        	
          index

        	
          previous |

        	python-for-researchers 0.1 documentation 
 
      

    


    
      
          
            
  
Python Packages


IPython


Overview: http://ipython.org/

Documentation: http://ipython.org/documentation.html

Examples Gallery: http://nbviewer.ipython.org/







NumPy


Overview: http://www.numpy.org/

Documentation: http://docs.scipy.org/doc/numpy/reference/

Tutorial: http://www.scipy.org/Tentative_NumPy_Tutorial







SciPy


Overview: http://www.scipy.org/

Documentation: http://docs.scipy.org/doc/

Tutorial: http://docs.scipy.org/doc/scipy/reference/tutorial/

Recipes: http://www.scipy.org/Cookbook







matplotlib


Overview: http://matplotlib.org/

Documentation: http://matplotlib.org/contents.html

Examples Index: http://matplotlib.org/examples/index.html

Examples Gallery: http://matplotlib.org/gallery.html







pandas


Overview: http://pandas.pydata.org/

Documentation: http://pandas.pydata.org/pandas-docs/stable/

Recipes: http://pandas.pydata.org/pandas-docs/stable/cookbook.html







StatsModels


Overview: http://statsmodels.sourceforge.net/

Documentation: http://statsmodels.sourceforge.net/stable/index.html







NetworkX


Overview: http://networkx.github.io/

Documentation: http://networkx.github.io/documentation/latest/contents.html

Tutorial: http://networkx.github.io/documentation/latest/tutorial/

Examples: http://networkx.github.io/documentation/latest/examples/







Natural Language Toolkit (NLTK)


Overview: http://nltk.org/

Documentation: http://nltk.org/api/nltk.html

Tutorial: http://nltk.org/book/







scikits


Overview: http://scikits.appspot.com/

Index of Kits: http://scikits.appspot.com/scikits





scikit-learn


Overview: http://scikit-learn.org/stable/

Documentation: http://scikit-learn.org/stable/modules/classes.html

Tutorial: http://scikit-learn.org/stable/tutorial/index.html

Examples Gallery: http://scikit-learn.org/stable/auto_examples/index.html







scikit-image


Overview: http://scikit-image.org/

Documentation: http://scikit-image.org/docs/dev/

Examples Gallery: http://scikit-image.org/docs/dev/auto_examples/









SymPy


Overview: http://sympy.org/en/index.html

Documentation: http://docs.sympy.org/

Online Interpreter: http://live.sympy.org/







StarCluster


Overview: http://star.mit.edu/cluster/

Documentation: http://star.mit.edu/cluster/docs/latest/manual/index.html

Tutorial: http://star.mit.edu/cluster/docs/latest/quickstart.html


	Note: You need to setup an Amazon AWS account before you can do anything

	useful with this software. The account is free and you are given an
initial number of compute hours for free as well. However, you will be
charged beyond a certain point or for using a certain class of
computing resources.









Cython


Overview: http://cython.org/

Documentation: http://docs.cython.org/

Tutorial: http://docs.cython.org/src/tutorial/index.html







Numba


Overview: http://numba.pydata.org/

Documentation: http://numba.pydata.org/numba-doc/0.8/index.html

Examples: http://numba.pydata.org/numba-doc/0.8/examples.html










          

      

      

    


    
         Copyright 2012 - 2013, Eric A. McDonald.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        	latest

      
    

  










  
    
      Navigation

      
        	
          index

        	python-for-researchers 0.1 documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2012 - 2013, Eric A. McDonald.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        	latest

      
    

  










  _static/minus.png





_static/comment-bright.png





search.html

    
      Navigation


      
        		
          index


        		python-for-researchers 0.1 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2012 - 2013, Eric A. McDonald.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		latest


      
    


  









  

_static/comment-close.png





outline.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		python-for-researchers 0.1 documentation »

 
      


    


    
      
          
            
  
Python I: Intro



Expectations



		Previous programming experience recommended. Focus is on using Python as a
tool, not on teaching programming.


		Will learn language while learning [hopefully] useful tools.


		Python is not the solution to all your problems. (I.e., this seminar is
informational rather than evangelical in nature. Draw your own conclusions.)


		Python is not a magical gift box; it is a programming language. At least
some work will be required to reach your goals.








Python Interest Group at MSU?



		People would meet to help each other install Python and various Python
packages.


		People would talk about how they use Python at work.


		People would share their experiences with various pieces of Python software.


		Any interest?








Why Python?



		Popularity. You will likely encounter it. Maybe you already did and maybe
that is why you are here?





		Compared to many other scripting languages, it has a fairly simple syntax
which encourages the writing of readable code and may be easier to learn.





		Compared to other scripting languages, it has one of the most
full-featured sets of tools for scientific computing: NumPy, SciPy,
pandas, and matplotlib.





		Comparisons and Contrasts




		Matlab/Octave




		vs NumPy, SciPy, matplotlib, and scikits












		R




		Can embed in IPython


		vs pandas, StatsModels, and matplotlib












		Julia




		Can embed in IPython












		Perl, Ruby, Scala, Clojure, Haskell, OCaml, etc...





		Javascript















		Consistency




		Warts in Ruby and Javascript: https://www.destroyallsoftware.com/talks/wat


















Interpreters



		Python




		Python 2 and Python 3


		CPython, IronPython, Jython, and Stackless Python












		IPython




		IPython Terminal


		IPython QtConsole


		IPython Notebook












		Interpreters on the Web




		repl.it: http://repl.it/languages/Python


		PythonAnywhere: https://www.pythonanywhere.com/












		Running Programs




		Pitfall Warning: Explicit print vs implicit print.












		Compiling Programs




		No explicit compilation. Performed on-the-fly from source into Python VM
bytecode. (Note presence of .pyc and .pyo files.)


		PyPy and Nuitka


		Pyrex and Cython


		Numba


















Everything is an Object



		Almost everything is an object.




		Don’t worry too much about what an object is. Consider it to be a some
kind of value which has some associated attributes.


		Attributes, themselves, are generally objects.


		Objects are created from types. Types themselves are objects.


		Don’t worry about object-oriented programming, if you’re not familiar with
it. Existing types are flexible enough that you usually won’t have to
create your own. (But, it is easy to do so if you have the need!)












		Information about an object and its attributes can be found.




		help() [http://docs.python.org/library/functions.html#help]


















Built-in Types



		object


		type


		module


		NoneType


		bool


		function (named and anonymous)


		int, long


		float


		complex


		str, unicode, bytearray


		tuple


		list


		set [http://docs.python.org/library/stdtypes.html#set]


		dict [http://docs.python.org/library/stdtypes.html#dict]








Variables



		Important: Types are associated with values rather than variable names.





		Variable names are references to values.




		References to values are created by assignment with = statement.


		References are likewise changed with = statement.


		References are deleted with del statement.


		Examples.












		Pitfall Warning: Multiple named references to same sequence or mapping.




		Example.


		How to make a copy of a sequence? Several ways - more on that later.












		Multiple assignment can be performed using commas as separators.





		Multiple values can be swapped without explicit intermediate variables.




		Exercise: Try it!


















Operators



		+, -, *, /, //, %, **




		Exercises:




		What happens if you add strings?


		What happens if you multiply a string, tuple, or list by an integer?












		Notes on integer division vs true division.





		Examples of string interpolation.





		Examples of the assigning variants of these operators.















		==, !=, <, <=, >=, >





		is, is not, in, not in




		Notes on precedence and alternative keyword orders.












		not, and, or




		Notes on “zeroish” vs “non-zeroish” values.


		Notes on short-circuiting evaluation.












		~, &, |, ^, <<, >>




		Examples of the assigning variants of these operators.


















Working with Objects



		Objects are instances of types.




		Instances can be created by calling types or factory functions.


		Examples.












		dir() [http://docs.python.org/library/functions.html#dir]





		hasattr() [http://docs.python.org/library/functions.html#hasattr], getattr() [http://docs.python.org/library/functions.html#getattr], setattr() [http://docs.python.org/library/functions.html#setattr]





		Dot notation (.) is used to access attributes.




		Exercise: Try to add an attribute to an instance of object.












		The class statement defines a new type.




		Inheritance. Old-style and new-style classes.


		Example of simple class.


		Exercise: Define a new class. Create an instance of it. Then, try to add a
custom attribute to it. If successful, then try accessing that attribute.












		Note on special methods with double underscores.











Working with Strings



		len() [http://docs.python.org/library/functions.html#len]





		Indexing




		Note on zero-based indexing.


		Exercise: What happens if you use a negative index?












		Slicing




		Colon notation (:) for range and stride.


		Examples.












		str.strip() [http://docs.python.org/library/stdtypes.html#str.strip]





		str.lower() [http://docs.python.org/library/stdtypes.html#str.lower] and str.upper() [http://docs.python.org/library/stdtypes.html#str.upper]





		str.split() [http://docs.python.org/library/stdtypes.html#str.split] and join()





		str.replace() [http://docs.python.org/library/stdtypes.html#str.replace]





		str.format() [http://docs.python.org/library/stdtypes.html#str.format]




		Examples.












		str.__sizeof__()




		Notes on character width.


















Working with Tuples



		Creation of tuples.


		Length, indexing, and slicing like strings.


		Pitfall Warning: Syntactic sugar for 1-element tuple.


		Note on multiple assignment and tuples.








Working with Lists



		Creation of lists.




		List comprehensions.


		range() [http://docs.python.org/library/functions.html#range] and xrange() [http://docs.python.org/library/functions.html#xrange]












		Length, indexing, and slicing like strings.





		list.append() and list.insert()




		Exercise: Insert an item at the front of a list.












		list.extend()





		Item removal.




		Use del with an index or slice.


		list.pop()


		list.remove()












		list.count()





		list.reverse() and reversed() [http://docs.python.org/library/functions.html#reversed]





		list.sort() and sorted() [http://docs.python.org/library/functions.html#sorted]











Working with Sets



		Creation of sets.




		Pitfall Warning: The empty set is not { }!












		Length, but no indexing or slicing.





		set.add() [http://docs.python.org/library/stdtypes.html#set.add]





		set.pop() [http://docs.python.org/library/stdtypes.html#set.pop], set.remove() [http://docs.python.org/library/stdtypes.html#set.remove], set.discard() [http://docs.python.org/library/stdtypes.html#set.discard]





		set.intersection() [http://docs.python.org/library/stdtypes.html#set.intersection], set.union() [http://docs.python.org/library/stdtypes.html#set.union]




		Updating variants of these methods.


		Examples.












		set.difference() [http://docs.python.org/library/stdtypes.html#set.difference], set.symmetric_difference() [http://docs.python.org/library/stdtypes.html#set.symmetric_difference]




		Updating variants of these methods.


		Examples.












		Exercise: What do the -, &, |, and ^ operators do with sets?





		Exercise: What about the assigning variants of the same?





		frozenset [http://docs.python.org/library/stdtypes.html#frozenset]











Working with Dictionaries



		Creation of dictionaries.




		From a list of key-value pairs.



enumerate() [http://docs.python.org/library/functions.html#enumerate]


zip() [http://docs.python.org/library/functions.html#zip]









		dict.fromkeys() [http://docs.python.org/library/stdtypes.html#dict.fromkeys]





		Dictionary comprehensions.





		Examples.





		Exercise: Create a dictionary, using a list of letters as keys and a list
of numbers as values.















		Indexing by key, but no slicing.





		Value retrieval by indexing vs dict.get() [http://docs.python.org/library/stdtypes.html#dict.get].





		Testing for a key with the in operator.





		Lists of keys, values, and key-value pairs.




		Views vs iterators.












		frozendict











Flow Control and Modularity



		pass





		def - yield - return




		Functions can return multiple values.


		Arbitrary numbers of arguments.


		Keyword arguments.


		Examples.












		if - elif - else




		Examples.












		for .. in - continue - break - else




		Really? An else clause with a loop? Yes.


		Examples.












		while - continue - break - else




		Examples.












		try - except - else - finally




		The exception hierarchy.


		Examples.












		with




		Examples later.


















Functional Programming



		lambda


		Biconditional expressions.


		all() [http://docs.python.org/library/functions.html#all] and any() [http://docs.python.org/library/functions.html#any]


		map() [http://docs.python.org/library/functions.html#map]


		filter() [http://docs.python.org/library/functions.html#filter]


		reduce() [http://docs.python.org/library/functions.html#reduce]


		sum() [http://docs.python.org/library/functions.html#sum], min() [http://docs.python.org/library/functions.html#min], max() [http://docs.python.org/library/functions.html#max]








Working with Files



		open() [http://docs.python.org/library/functions.html#open] and with context handler




		Modes












		Iteration over lines of text file.





		file.read() [http://docs.python.org/library/stdtypes.html#file.read], file.readline() [http://docs.python.org/library/stdtypes.html#file.readline]





		file.write() [http://docs.python.org/library/stdtypes.html#file.write], file.writeline()











Miscellany



		repr()


		raw_input() [http://docs.python.org/library/functions.html#raw_input]


		eval() [http://docs.python.org/library/functions.html#eval]


		exec()


		Decorators


		Properties


		__builtins__, __builtin__ [http://docs.python.org/library/__builtin__.html#__builtin__], builtins








Standard Library



Namespaces, Scopes, and Modules



		vars() [http://docs.python.org/library/functions.html#vars]


		locals() [http://docs.python.org/library/functions.html#locals] and globals() [http://docs.python.org/library/functions.html#globals]


		import


		from .. import ..


		Aliasing with as.


		Multiple selective imports.








Back to the Future



		__future__ [http://docs.python.org/library/__future__.html#__future__]




		division


		print_function


		absolute_import


















Python Sundries



		sys [http://docs.python.org/library/sys.html#sys]








Human-Readable Data



		pprint [http://docs.python.org/library/pprint.html#pprint]








Math and Statistics



		math [http://docs.python.org/library/math.html#math], cmath [http://docs.python.org/library/cmath.html#cmath]


		fraction, decimal [http://docs.python.org/library/decimal.html#decimal]


		random [http://docs.python.org/library/random.html#random]








Gathering Data



		csv [http://docs.python.org/library/csv.html#csv]




		Can handle other separators besides commas.












		urllib [http://docs.python.org/library/urllib.html#urllib], urllib2 [http://docs.python.org/library/urllib2.html#urllib2]











Data Persistence



		pickle [http://docs.python.org/library/pickle.html#pickle]








Raking Data



		operator [http://docs.python.org/library/operator.html#operator]




		operator.itemgetter() [http://docs.python.org/library/operator.html#operator.itemgetter]


		operator.attrgetter() [http://docs.python.org/library/operator.html#operator.attrgetter]


		Functional forms of built-in operators.












		re [http://docs.python.org/library/re.html#re]











Files, Directories, and Subprocesses



		os [http://docs.python.org/library/os.html#os], subprocess [http://docs.python.org/library/subprocess.html#subprocess]


		os.path [http://docs.python.org/library/os.path.html#os.path], glob [http://docs.python.org/library/glob.html#glob], shutil [http://docs.python.org/library/shutil.html#shutil]












Python II: Data Analysis and Visualization



Expectations



		Consider me to be a tour guide rather than an expert.




		Will highlight capabilities of various pacakges, bu have very little
experience with most of them.


















IPython



		Copy and paste of example output.





		Pop-up help.





		Tab completions.





		Persistent history.





		Saving and restoring notebooks.





		Pylab




		vs SAGE


















NumPy



		NumPy arrays vs Python lists.





		Creation of arrays.




		array


		arange


		linspace


		zeros, ones












		Reshaping arrays.





		eye





		Element-wise operations.





		Simple linear algebra.





		Simple stats.











SciPy





matplotlib





pandas





StatsModels





NetworkX





NLTK





scikits



		scikit-learn


		scikit-image








SymPy



		Running isympy.





		Using SymPy from within an IPython GUI.




		Example.


















StarCluster





Miscellany



		mpi4py


		IPython parallelism


		Cython


		Numba


		PyCUDA











          

      

      

    


    
        © Copyright 2012 - 2013, Eric A. McDonald.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		latest


      
    


  









  

_static/up-pressed.png





_static/cc-by.png
() _®





_static/up.png





_static/down.png





_static/plus.png





_static/comment.png





_static/ajax-loader.gif





_images/cc-by.png
() _®





_static/file.png





ipython/index.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		python-for-researchers 0.1 documentation »

 
      


    


    
      
          
            
  
IPython



Consoles



		Terminal


		Qt Console


		Web Notebook








Table of Contents




		Qt Console
		Starting
		Windows

























          

      

      

    


    
        © Copyright 2012 - 2013, Eric A. McDonald.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		latest


      
    


  









  

_static/down-pressed.png





ipython/qtconsole.html

    
      Navigation


      
        		
          index


        		
          next |


        		
          previous |


        		python-for-researchers 0.1 documentation »


          		IPython »

 
      


    


    
      
          
            
  
Qt Console


If you have an IPython installation which includes support for the popular Qt
library, then you should be able to use the Qt console for IPython. You will
have this user interface available, if your IPython installation comes from a
Python distribution, such as the Enthought Canopy (EPD) or
Continuum Analytics Anaconda.


Here are some nice features of the Qt console:




		Inline display of plots.


		Easy zooming of font sizes.










Starting



Windows



		Use Windows-R (while holding down on the Windows key,
type R) to display a Run prompt.





		Type:



ipython-qtconsole










and press Enter.





		If the above does not work, then type the following at the Run prompt
instead:



ipython qtconsole










and press Enter.
















          

      

      

    


    
        © Copyright 2012 - 2013, Eric A. McDonald.
      Created using Sphinx 1.1.3.
    

 





  
     Brought to you by Read the Docs
    
      
        		latest


      
    


  









  

